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with no short contacts to the hexafluorophosphate counterions. 
The double-helical geometry is emphasized in the sketch of the 
molecule presented in Figure lb. The two cadmium atoms are 
in irregular six-coordinate N6 environments, with all Cd-N dis­
tances in the expected range 2.301 (6)-2.403 (6) A. The intra­
molecular Cd(I)-Cd(IA) distance is 4.173 (4) A and is dictated 
by the conformation of the ligand set. It is worthy of note that 
this metal-metal distance is actually shorter than that of 4.503 
(2) A observed in the complex [Cu2(U)2(OAc)] [PF6]3 (L1 = 
2,2':6',2":6",2"':6,",2""-quinquepyridine)3 and is dictated by the 
double-helical arrangement of the ligands. The double-helical 
geometry is achieved by a twist of 57.3° between rings C and D 
such that each ligand presents a terpyridyl donor set to each 
cadmium ion. Each terpyridyl moiety is approximately planar, 
with interplanar angles between adjacent rings in the range 
2.0-13.2°. A stacking interaction is observed between terpyridyl 
fragments of the two ligands, with closest interplanar contacts 
between rings B and C (3.736 A) and rings D and E' (3.561 A); 
all other interplanar contacts are greater than 4.0 A. These 
structural features are seen in the space-filling representation of 
the cation presented in Figure Ic. We consider that the stacking 
interaction observed between the aromatic ligands is the most 
important feature in the formation of the double-helical geometry, 
and this interaction is emphasized in Figure Id. This is the first 
example of a double-helical binuclear complex incorporating two 
near-octahedral six-coordinate metal ions coordinated to the 
helicate-forming ligand, although the binding of ancillary ligands 
in the case of nickel(II) and cobalt(II) complexes of quinque-
pyridine allows the formation of two six-coordinate sites. In 
contrast, the complex cation [Pd2(quinquepy)2]

4+ contains two 
/j'ye-coordinate metal ions." The 1H NMR spectrum of the 
complex indicates 10 magnetically distinct proton resonances, 
strongly suggesting that the double-helical geometry (which results 
in local D2 symmetry about each metal ion) is maintained in 
solution. The complex is electrochemically inert, merely exhibiting 
irreversible absorption processes at moderate negative potentials. 

The crystal-structural analysis confirms our predictions that 
the sexidentate ligand L allows the preparation of binuclear 
double-helical complexes with second-row (and third-row) tran­
sition elements, and we are currently investigating the properties 
of the ruthenium(II) complexes.12 
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The view has long been held that [2„]cyclophanes constructed 
of decks possessing An -̂-electrons or a combination of decks with 
An and (An + 2) ^--electrons will differ intrinsically in chemical 
properties from structural counterparts where both decks have 
(An + 2) 7r-electrons.''2 The ability to alter cavity size reversibly 
by means of redox reactions holds particular fascination.3,4 

Unusual opportunities for metal complexation are also offered. 
For these and many other reasons, the parent cyclooctatetrae-
nophanes constitute attractive synthetic targets.5 Since they are 
unknown, we have sought to develop new and versatile synthetic 
technology for their acquisition. Herein we detail the successful 
preparation of the first member of this series, [22](1,5)-
cyclooctatetraenophane (9) and present an early glimpse at the 
properties inherent to this fascinating molecule. 

The route to 9 began with the [6.3.3]propellenedione 1, a 
tricyclic compound readily available6 from c/s-5-cyclooctene-
1,2-dione.7 Its conversion to acetonide 28 was efficiently ac­
complished (83%) by dihydroxylation with catalytic (0.1 mol %) 
osmium tetraoxide and direct acetonide formation.9 Lithium 
aluminum hydride reduction of 2, subsequent 2-fold xanthate 
elimination to give 3, and mild acidic hydrolysis provided the diol 
as a mixture of olefin isomers (56% overall). The formation of 
two regioisomeric dienes at this point is not of long-range con­
sequence, since they converge to a single intermediate at a later 
stage. 

Application of the Swern protocol to 3 gave 4 (69%) with 
minimal complication stemming from overoxidation or cleavage.10 

As shown in Scheme I, submission of 4 to the Cook-Weiss pro­
cedure6 served admirably to generate the pivotal pentacyclic 
diketone 5 (85%). This highly crystalline solid was next subjected 
to the same two-step reduction-elimination sequence utilized 
previously on 3. As anticipated, the resulting tetraene 6 (70%) 
could be allylically tetrabrominated when heated (20 min) with 
4 equiv of N-bromosuccinimide and a catalytic quantity of AIBN 
in carbon tetrachloride solution. The unpurified product mixture 
was directly converted into the unusual bis(semibullvalene) T ^ 
1" by coupling with nickel carbonyl (34% isolated).11 The sim­
plicity of the 1H and 13C NMR spectra of this hydrocarbon12 

attests to the highly fluxional character of both of its divinyl-

(1) Boekelheide, V. Top. Curr. Chem. 1983, 113, 87. 
(2) Garbe, J. E.; Boekelheide, V. J. Am. Chem. Soc. 1983, 105, 7384. 
(3) Mullen, K. Chem. Rev. 1984, 84, 603. 
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UO, 8192. Paquette, L. A.; Wang, T.-Z.; Luo, J.; Cottrell, C. Ibid. 1987,109, 
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29,41. Paquette, L. A.; Wang, T.-Z.; Luo, J.; Cottrell, C. E.; Clough, A. E.; 
Anderson, L. B. J. Am. Chem. Soc. 1990,112, 239. 1,4-bridging (Paquette, 
L. A.; Trova, M. P. Ibid. 1988, UO, 8197; Tetrahedron Lett. 1986, 27, 1895), 
and 1,5-bridging (Paquette, L. A.; Trova, M. P. Ibid. 1987, 28, 4354. Pa­
quette, L. A.; Trova, M. P.; Luo, J.; Clough, A. E.; Anderson, L. B. J. Am. 
Chem. Soc. 1990, 112,22%. 
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(12) 1H NMR (300 MHz, CDCl3): 6 5.16 (t, J = 3.8 Hz, 2 H), 4.99 (t, 
J = 3.8 Hz, 2 H), 4.18 (t, J = 3.8 Hz, 4 H), 4.09 (t, J = 3.8 Hz, 4 H), 
1.60-1.40 (m, 8 H). 13C NMR (75 MHz, CDCl3): (ppm) 120.37, 118.62, 
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within 5 kcal/mol of the global minimum were examined for their 
MM2 energy and ultimately submitted to MMX analysis for final 
minimization. By this means, the dl isomer 9 was found to be 
3.1 kcal/mol more stable than dl-%. The lack of accountability 
by this computer program of symmetry numbers is of no conse­
quence in this case since either isomer is rf2-symmetric.18 

Preliminary vacuum-line electrochemical studies on dl-9 using 
previously developed techniques19'20 have shown reduction in dry 
HMPA to give rise to three well-defined irreversible one-electron 
waves at scan rates of 100-600 mV/s. These appear at -2.65, 
-2.86, and -3.15 V. The difficulty in adding the first electron 
is quite striking.21 While arrival at the tetraanion stage is clearly 
not achieved,22 analysis of the precise details of the reduction 
process awaits completion of additional studies soon to be un­
dertaken. 

In our view, the synthetic pathway outlined herein should be 
amenable to modifications that allow for control of the length, 
chemical constitution, and location of the interconnective bridges. 
We hope to report on such developments and on the further 
chemical modification of 9 at a later date. 
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cyclopropane segments.13 An X-ray analysis of 7 gave results 
quite similar to the other "averaged" structures reported previously 
for functionalized semibullvalenes.14 

Thermal isomerization15 of 7 at 500-510 0C by dropping an 
ethereal solution into a vertical quartz tube under nitrogen gave 
the (l,5)cyclooctatetraenophane as a waxy white solid (32%; 40% 
based on recovered 7). The temperature-invariant 1H and 13C 
NMR spectra of the product16 provide strong suggestion that one 
bond-shift isomer heavily dominates the dl «=s dl equilibrium. 
Important insight into this issue was gained by conducting a 
multiconformer search with the "statistical search" function of 
the MODEL (version KS 2.94) program.17 All 124 conformers 

(13) Compare: Anet, F. A. L.; Anet, R.; Trova, M. P.; Paquette, L. A. 
Tetrahedron Lett., in press. 

(14) (a) Jackman, L. M.; Benesi, A.; Mayer, A.; Quast, H.; Peters, E.-M.; 
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Am. Chem. Soc. 1974, 96, 7483. (c) Paquette, L. A.; Ley, S. V.; Meisinger, 
R. H.; Russell, R. K.; Oku, M. Ibid. 1974, 96, 5806. 
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(Octaethylporphyrinato)rhodium(II) dimer, [(OEP)Rh]2, which 
has a Rh-Rh bond energy of ~16 kcal mol""1,1,2 is observed to 
react with benzylic C-H bonds ( A > H ~ 87 kcal mol-1) in alkyl 
aromatics3'4 (eq 1) but not with unactivated alkanes ( A > H ~ 
[(OEP)Rh]2 + CH3C6H5 ^ 

(OEP)Rh-CH2C6H5+ (OEP)Rh-H (1) 

100-105 kcal mol-1). Our approach to extending the range of 
C-H bond reactions for rhodium(II) porphyrin complexes has been 
to introduce ligand steric requirements that reduce the Rh"-Rhn 

bond energy without seriously weakening the Rh-C bonding. 
(Tetramesitylporphyrinato)rhodium(II), (TMP)Rh', constitutes 
a limiting case where ligand steric requirements completely exclude 
metal-metal bonding.5 This article reports on the selective re­
action of (TMP)Rh* with methane in benzene solution and further 
describes aspects of the thermodynamic and kinetic-mechanistic 
features for this reaction. 
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